
  

Generics in C#Generics in C#



  

IntroductionIntroduction

 Generics allow you to define type-safe data Generics allow you to define type-safe data 
structures, without committing to actual data structures, without committing to actual data 
typestypes
 Higher quality code (Code Re-Use)Higher quality code (Code Re-Use)
 Similar to generics in Java/C++ (although a bit Similar to generics in Java/C++ (although a bit 

different from the C++ implementation)different from the C++ implementation)



  

Generics w/o HelpGenerics w/o Help



  

Generics w/o HelpGenerics w/o Help



  

Generics w/o HelpGenerics w/o Help

 DrawbacksDrawbacks
 Performance issuesPerformance issues

 Boxing and unboxing for value typesBoxing and unboxing for value types
 Casting cost for referencesCasting cost for references



  

Generics w/o HelpGenerics w/o Help

 DrawbacksDrawbacks
 Type safety ! Major issue !Type safety ! Major issue !

 An Object reference can reference any type of An Object reference can reference any type of 
objectobject

 You can cast it to any other typeYou can cast it to any other type
 We lose compile-time safety (performance – type We lose compile-time safety (performance – type 

verifications at runtime)verifications at runtime)
 Runtime bugs !Runtime bugs !



  

Generics in C#Generics in C#



  

Generics in C#Generics in C#



  

Generics w Multiple ParametersGenerics w Multiple Parameters



  

Generics w Multiple ParametersGenerics w Multiple Parameters



  

Generic Constraints (1/6)Generic Constraints (1/6)



  

Generic Constraints (2/6)Generic Constraints (2/6)

 Will not compileWill not compile
 Are you sure K Are you sure K 

supports the == supports the == 
operator ???? !operator ???? !



  

Generic Constraints (3/6)Generic Constraints (3/6)

 Overcome using the Icomparable interfaceOvercome using the Icomparable interface
if(current.Key.CompareTo(key) == 0)if(current.Key.CompareTo(key) == 0)

 Will not compile ! K does not necessarily implement the Will not compile ! K does not necessarily implement the 
Icomparable interface ! Icomparable interface ! 

   Overcome using casting !Overcome using casting !

If (((IComparable)(current.Key)).CompareTo(key) == 0)If (((IComparable)(current.Key)).CompareTo(key) == 0)
 Runtime Error !!!! Runtime Error !!!! 



  

Generic Constraints (4/6)Generic Constraints (4/6)



  

Generic Constraints (5/6)Generic Constraints (5/6)

 Multiple interfacesMultiple interfaces

public class LinkedList<K,T> where K : public class LinkedList<K,T> where K : 
Icomparable<K>,IconvertibleIcomparable<K>,Iconvertible

 Constraints per parameterConstraints per parameter

public class LinkedList<K,T> public class LinkedList<K,T> 
where K : where K : Icomparable<K>Icomparable<K>

where T : ICloneable where T : ICloneable 



  

Generic Constraints (6/6)Generic Constraints (6/6)

 Can use a base class as a constraintCan use a base class as a constraint
 Just ONE as C# does not support multiple Just ONE as C# does not support multiple 

inheritance of concrete classesinheritance of concrete classes
 Should be first ont the list !Should be first ont the list !

public class LinkedList<K,T> where K : public class LinkedList<K,T> where K : 
MyBaseClass, IComparable<K>MyBaseClass, IComparable<K>



  

Constructor ConstraintConstructor Constraint

 Make sure the T Make sure the T 
type has a default type has a default 
constructor !constructor !



  

Is/As Operators Vs CastingIs/As Operators Vs Casting

 Avoid runtime bugs !Avoid runtime bugs !
 is returns true if the generic type parameter is is returns true if the generic type parameter is 

of the queried typeof the queried type
 as will perform a cast if the types are as will perform a cast if the types are 

compatible, and will return null otherwise  compatible, and will return null otherwise  



  

Generics And Inheritance (1/3)Generics And Inheritance (1/3)



  

Generics And Inheritance (2/3)Generics And Inheritance (2/3)

 Repeat constraints Repeat constraints 
in subclassesin subclasses
 Types, constructor Types, constructor 

constraintsconstraints



  

Generics And Inheritance (3/3)Generics And Inheritance (3/3)



  

Generic MethodsGeneric Methods

 allows you to call the method with a different allows you to call the method with a different 
type every timetype every time

 Handy for utility classesHandy for utility classes



  

Generic Static MethodsGeneric Static Methods



  

Generic Event HandlingGeneric Event Handling


	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24

